Пентамино́ (от др.-греч. πέντα пять, и домино) — полимино из пяти одинаковых квадратов, то есть плоские фигуры, каждая из которых состоит из пяти одинаковых квадратов, соединённых между собой сторонами («ходом ладьи»). Этим же словом иногда называют головоломку, в которой такие фигуры требуется укладывать в прямоугольник или другие формы.
Самая распространённая задача о пентамино — сложить из всех фигурок, без перекрытий и зазоров, прямоугольник. Поскольку каждая из 12 фигур включает в себя 5 квадратов, то прямоугольник должен быть площадью 60 единичных квадратов. Возможны прямоугольники 6×10, 5×12, 4×15 и 3×20. Каждую из этих головоломок можно решить вручную, но более сложной задачей является подсчёт общего числа возможных решений в каждом случае.Для случая 6×10 эту задачу впервые решил в 1965 году Джон Флетчер [1]. Существует ровно 2339 различных укладок пентамино в прямоугольник 6×10, не считая поворотов и отражений целого прямоугольника, но считая повороты и отражения его частей (иногда внутри прямоугольника образуется симметричная комбинация фигур, поворачивая которую можно получить дополнительные решения; для прямоугольника 3×20, приведённого на рисунке, второе решение можно получить поворотом блока из 7 фигур, или, иначе говоря, если поменять местами четыре фигуры, крайние слева, и одну крайнюю справа).Для прямоугольника 5×12 существует 1010 решений, 4×15 — 368 решений, 3×20 — всего 2 решения.В какой-то степени более простую (более симметричную) задачу, для квадрата 8×8 с отверстием в центре 2×2, решил еще в 1958 году Дана Скотт[2]. Для этого случая существует 65 решений. Алгоритм Скотта был одним из первых применений компьютерной программы поиска с возвратом. Другой вариант этой головоломки — выкладывание квадарата 8×8 с 4 «дырками» в произвольно заданных местах. Большинство таких квадратов решаются, за исключением случаев размещения двух пар дырок вблизи двух углов доски так, чтобы в каждый угол можно было поместить только P-пентамино.